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1. Introduction. In recent papers, conditions have been established

({1],{31,[4]) under wnich an analytic solution of the radial heat

equation

(1.1) 32 ulr,t) = balr,t), &, = 02 + [(u-1)/r1D,

has valld series expansions of the form

o0
s . i
(a) nio aan(I',t)
(1.2)
o0 NLL
(v) niO ban(r,t) .

In these, the Rz(r,t) denote the radial heat polynomials while the

e

Ri(r,t) denote their corresponding Appell transforms [1]. Throughout
this paper we assume that g > 1. The results show that u(r,t) has
the representation (1.2a) valid in the time strip [t| < 14; g)provided
there exists an entire function é(rg), of growth (1,0) in r®, such
that

(13) u(me) = [ R 2 W2 B e (2 ge2)a6

) ’ o =2° u/2-12% :

Moreover, u(r,0) = ¢(r2). Similarly, u(r,t) has the representation
(1.2b) in the half plane t > © > 0 provided that u(r,t) satisfies a

Huygen's principle as well as the‘integrability cohdition
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2 s |
- P /3 :
(1.4) fég’” 1 &/ “lu(E,t)|dE<C » for t > 0.
In this case, there exists an entire function‘y(re), of growth-(1,0)

in r2, sucn that
w2 2 lep/2pn/2 B2t ) 22
(1.5) u(r,t) = (2m)™ for'“ EXE3, jp 1 (rB)e™™ P Y (E5)aE.
The coefficients in (1.2a) and (1.2b) are given, respectively, by

(a) 2, = rzyr 4127)(0)

n 2n
(1.6) n = O: l: 2,
(b) ©® —ﬁil—l—‘V(Qn)(o)
n o)t

There exist solutions of (1.1) that have expansions of one of these
types but not the other.

There remain a number of questions pertaining to these expan-
sions. For example, if a solution of (1.1) is to satisfy the
condition u(r,0) = é(rg), is there a simple test to determine if
u(r,t) has the expansion (1.2b) without evaluating (1.3) and
validating condition (1.%4)? If so, can the coefficients b, in this
expansion be determined from the data? It.is evident that the data
should provide all required information. HNext, suppose that the
expansion (1.2b) converges to an analytic solution of (1.1) for
t > 0> 0. Is it possible to continue this solution across the
boundary t = ¢ to define an expansion of the form (1.2a)? If not,
does there exist an expansion of the form (l.2a) holding in any
time strip?

Answers to these and similar questions can be provided by

obtaining connections between the dual functions ¢(r2) and¥ (r?)

defined above. It willl be shown in section 2 that both expansions

(1.2) hold if there exists a palr of symmetrical integral relationships



between these dual functions. The relationships resemble Hankel
transforms. Introducing Laplace transforms, necessary and sufficient
conditions are obtalned (in section 3) in order that an entire
function ¢(r2) define an entire dual function‘V(rg). The dual of
é(rg) (or=W(r2)) may fall to exist or else exist only as a distri-
bution. In the former case, we refer to t = 1/40 as a natural
boundary of u(r,t). In the latter case, the integrals (1.3) and
(1.5) lead to the same series expansions. Examples are provided
to illustrate theorems. The connection between the above problem
and D. V. Widder's studies on the resemblance between classical
function theory and classes of solutions of the standard heat
equation [7] is evident.

2. Symmetrical Integral Relationships. Let ¢(r2) and W(re) be

entire functions that satisfy the following pair of relations

(a) ?(rg) = (27r)“/2r1_“/2 fz xw/gJu/E_l(rx)é(xg)dx
(2.1)
(6) &(r2) = (2r) W/ 22-1/2 f: 25, s (V) ax,

Throughout this section, we assume that xu/gé(xg) and xw/z?(xg)
€ Ll(O,w). Under these conditions, we have

Theorem 2.1. Let‘V(re) be defined by (2.la). Then the integral

(1.5) reduces to the integral (1.3).

Proof. Upon substituting (2.1a) into (1.5), we find
2

e fZ e/2gr/e e Tyt

o]

_g?t ’ oo
- fo 1"1_“'/25 u/eJu/g_l(ré)e {al—#/2 fo Xu/gJu/e_l(xél)c#(xe)dx;df,



4

- ® i oo" [ol} -gzt
_ I>l /2 jo Xu/z(p<x2) {foéJu/Q-l (ngu/e_l(xg)e

di}hx

1 = Zx?
_ r_L_}_L/Q fo XLL/Qd)(XQ){_é]_;C_ e-(r +x )/qtlu/g_l('ér%);dx'

The last member of this is precisely (1.3). The interchange of

orders of integration from the second to the third member follows

from the absolute integrability of xu/gé(XQ). The evaluation of

the inner integral in the third member is given in [5] (p.29,
second formula).
By a similar argument, we obtain

Theorem 2.2. Let ¢(r2) be defined by (2.1b) where xw/gw(xz)

EL}(O,w). Then the integral (1.3) reduces to the integral (1.5).
From these theorems, we see that a pair of functions related

by (2.1a) or (2.1b) define a solution function of (1.1) that has

expansions of both types indicated in (1.2). The regions in which

these different expansions are valld need not be adjacent.
2 2

2 -r -2r
Example 1. Select g = 2 and ¢(r°) = e + e,

2/ 2
W(PE) = m/Q{-e_r /4 + % e % /éf([B], p. 137). It follows that

Then

both types of expansions (1.2) hold for the corresponding u(r,t).
The first expansion holds for [t| < 1/8 while the second expansion
is valid for t > 1/4 (Theorem 5.1 and theorem 7.3 of [1]).

3. Laplace Transform Criterion. The integrablility requirements

on‘P(xg) and é(xz) in section 2 are more stringent than are necessary
to obtain both types of expansions (1.2). The function ¢(r2) may
have an oscillatory character and lead to a conditionally convergent
integral in (2.1a). For the purpose of treating such functions, it

is convenient to relate ¢ and ¥ by Laplace transforms. Following



Ui

. - e . i / s
he Fformulation in [2] \See tTheorem 2.2), we have

Tnheorem 3.1. Let

o0}
= fO e_xsxu/e_lé(x)dx.

Pay
w
F_J
g
=
©
Peaan ™
[£2]
"
I

Then
7.2
(3.2) ¥(r°)
in whicnh the variable in this inverse Laplace transform 1s replaced

byr%@.

%_ (2.,,7.)#/2112-.&}-_1;1{13'@/2,?“(l/p )}

By introducing the method of proof of theorem (14.a), p.S6 of
[6], we readily obtain:

Lemma 3.1. Let £(s) = 2 a plvmil) oo Is| > ¢ with v > - 1
%

8

n n+1l

n=0 S o
) | i -V, -SX_V
and ¢ a positive constant. Then s 'f(s) = [ e ®*x¥¢(x)dx where
- o
) i - n
d{x) is the entire function I a X -
n=0

If we make use of Stirling's formula, 1t follows that the above

series for f(s) converges for |s| > ¢ if and only if the series

a_nt

-f;;I converges for |s| > c¢. Upon combining this observation

8]
li

@]
42

with corollary (1l4.c), p. 96 of [{6] and using theorem 3.1, we find

IaY

Theorem 3.2. Let uw > 1 and let ¢(r2) be an entire function of r2 of

-sx%
e~ 5%¢

2 o
order O(eér ) as r —> o for arbitrary £ > 0. Let F(s) = [

Then the dual functionV’(r2) of é(rg) is entire in r° of order
* 2
Er ) .

o{e for arbitrary 5* > 0 as r —> » if and only if F(s) and
SR/Q-EF(I/S) are both entire functions of 1/s for |s| > c.

This theorem shows that the dual of the entire function ¢(r2)
is entire if the function s“/z"lTu(s) in theorem 3.1 involves, at
worst, poles or branch poles. These can only lie in the left half
plane or along the imaginary axis with Im(s) + 0. Under these

conditions, the corresponding u(r,t) has expansions of both types

indicated in (1.2). This also shows that if one of the represen-

o(x)dx.
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tations (1.2a) or (1.2b) is given, then “he corresponding é(re)
4 2 - - : - By Fan . : Fal L) P

or Y{r®) can be determined. The existence of the other type of

Series representation then reduces to the existenice of an entire

dual function. Note that if Th(s) falls to exist for O < Re(s) < a,

no

then u{r,t) corresponding to ¢(r°) has & natural boundary at
t = 1/(%a). This follows frca theorem 2.1 of [2]. 1If é(rg) and
Y1) are interchanged in theorem 3.1 and (277)”‘/2 is replaced by

EW)—“/g in (3.2), we obtain an analogous theorem. However, in

~—~

this situation if Th(s) fails to exist for 0 < Re(s) < a, then
u{r,t) corresponding to ¥ 2) has a natural boundary at ¢t = a
(theorem 2.2 of [2]).

Axample 2. Let g = 2 and ¢{r°) = sin r°. By theorem 3.1, we

have W(rg) = T cos (r2/4). From (1.6), we obtain 8oy = 0,

n
- [ n 1 - _(‘1277' —
8oy = (-1)"/(2n+1)! and by = 44n(2n)’ > Doy = O as the
coefficients in (1.2a) and (1.2b). In this example,

- 2 - 2\ o 2 2
u(r,t) = (1+16t2)’¢e'4r t/(1+16¢%) sin ~—£——§ + 4t cos ——2——52 .
f 1+16¢ 1+16t
Example 3. Let p > 1 and consider the expansion

<0 n ©
nio Fk;il72§ gi(r,t), From (1.6b) we find ¥(r?) = nio (4r2)?/P(n+l/2) =

Y2

W_l/2 + 2r e err (2r).

_ 2
As r tends to infinity,‘f(rg) behaves as 7_1/2 + 2re4r . It is
clear from theorem 3.1 (with ¢ and Y interchanged) that there exists
no corresponding dual function é(re). Since the integral (3.1)

fails to exist for s < 4, the solution u(r,t) defined by the given

expansion has & natural boundary at ¢t = 4.
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4L, Czrnaralized Dual Functions. Tre dual of an entire functicn
2 . - . 5 . ,
d{r~) may fail to be entire eltlher because TM<S> in theorem 3.1

does not exist for some s with Re(s) > O or because the conditions

of theorem 3.2 are not satisfied. If, however, ¢(r2) is the product
. . X . R ~ 2 .

of a polynomial 1in r2 by a tounded entire function of r~, a simple

calculation in thneorem 3.1 shows that

P=u/2 -1 r w2+l
i v/ Tu(p Y <M | p }[“/ ] for M a positive constant and

oo S ~ o e A . S —nn s e "U'/Er r=1
sufficiently large. Under these circumstances, p Pu\p )
is the laplace transform of a distribution bounded on the left at
§== O {p. 236, [8]). Depending upon the choice of ¢(r2), the
support of the distribution may lie to the right of € = 0. The

. iy 2 o o R

function ¢(r°) can grow more rapidly than a polynomial but less

P

repldly than a function bounded by Me® , fora >0, 0K B <K 1,
and still give rise to a generalized dual‘f(rg). For the most

- .o ; . . w2 - . .
ral conditions on T (s) in order that Y(r®) be a distribution,

e

see (8], p. 258. Thne two-sided Laplace transform 1s needed to
treat this case.

In order that u{r,t corresponding to an entire é(rg), have

oo

Ri(r,t);_p» it is necessary that the qual

} be entire in r2. The above discussion shows that 1f the

of é(r2) is a generalized function that is not entire, then
(o]

) nas expansions in tne set {Rﬁ(r,t}}nzo valid for all r 2 0

AY
/
. . . . ¢
an expansion in the set Z

and all t. Since the relation between é(rg) and T(r2) is
symmetrical, we see that ir the dual of'f(rz) is a non-entire
generalized function, then u(r,t) has valid expansions in the

"\Ju o -
set {R?(r’tZ}n—O for t > o> 0, o a constant. The generalized



(@¢]

a2 2 e .
dual of ¥ {r°) acts as a potentizl function concentrated along

the r-axis (see theorem 3.3, [2]).

Bxample L. Select u = 2 and é(rg) =£T(r2—a2), a > 0. From
't

no
~

5 Jo(ar). Using (1.6), we obtain
bo=% . 2 /[2"0(11)2] or the coefricients in (1.2b). That
expansion holds for t > 0. Tne corresponding u(r,t) in this case

. 2. 2\ ;e i
1s (8t) tem(FTRRI/AY 1 (a7 0py,
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